選手教育資料

この資料は、以下のURLで閲覧・印刷ができます。 http://www.bookhousehd.com/booktjs015.html

選手教育資料:運動強度を知る

~GSP測定と高強度トレーニングのススメ~

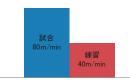
<GPSとは・・・>

- ・トラッキング(地球上での確実な位置の把握→走行距離の測定)
- ・加速度計(初速やインパクト測定、タックルインパクトなど)
- ジャイロメーター(ボディポジションやステップの癖などの測定)
- ・心拍数記録の測定

など

一般的な試合の運動強度

競技	ラグビー	ラグビー (セブンス)	サッカー	フットサル
試合時間(分)	80分+α	14分+α	90分+α	40分+α
走行距離(m)	6680	1550	10963	6190
平均速度(m/min)	72	102	114	156
HI Run Rate(%)	12	25		17


運動強度(試合 vs 練習)

ラグビーにおいて練習は30-40 m/min (0.5m/sec-0.67m/sec)程度のスピードでしか行われておらず、速度が試合の半分にも及んでいない

.⊑ 60 E 40 20

100

80

週に何回かゲームスピードを上回る練習をするべき

(High Intensity Running Rate (5m/sec以上)がラグビーでは15%以上、サッカーでは20%など)

GPS測定をスピードトレーニングに活かす GPSで瞬間的なスピードを明らかになり、スピー ドトレーニングの効果判定に非常に有効

目指せ

9.0m/sec(32.4km/h) 以上のスプリントカ

このページをコピーして、掲示などをして、選手教育にご活用ください

選手教育資料:持久力を伸ばす

~試合の勝負どころで走り負けないフィットネスを手に入れろ~

【持久力は段階的に強化すべし】

有酸素系:すべてのベース

最低でも4~8週間の継続強化

乳酸系 : 耐乳酸能力の向上

(この能力が勝敗を左右する)

有酸素系のトレーニング後3~6週間の継続強化

3ステップに分けて強化

①VO₂maxの向上を目的とした高強度インターバルトレーニング

②60秒程度のワークの耐乳酸トレーニング ③ATP-PCr系と乳酸系の両方がエネルギー源となるトレーニング

ATP-PCr系:スピード、スピード持久力の向上

乳酸系のトレーニング後 3週間程度強化

<u>持久力に焦点を当てたランニングパフォーマンス改善トレーニング一覧</u>

主要エネルギー 供給系	カテゴリー 主目的		%VO2max	%HRR	目標心拍数	主朝的運動強度		代表的種口	SERVED BANK	休息息等期間	セット数
		主目の				度合い	RPE	1 CROSSER	285 963 PH (FILE)	(W:R肽)	COPEX
ATP-PCr系	スプリントTR	スピード†						スピードインターバル	2-20₹9	1:5~10	2~-20
乳酸系·ATP-PCr系	耐乳酸茶	乳酸耐性						レベティション	20-40₹9	1:3~5	2~-10
乳酸系・酸化系	耐乳酸茶	乳酸耐性	-1	90ULE	200	限界、最大努力	20	レベティション	30-90%	1:3程度	2~10
	高強度有酸素	VO₂max†	0.9	80	190-180	非常にきつい	19-18	高強度インターバル	2分程度	1:2~3	5~10
			0.83	75	170-160	かなりきつい	17-16				
	低強度有酸素	LTレベル†	0.75	70				低強度インターバル	4分程度	1:1~0.5	3~10
酸化素	低強度有酸素	LTレベル†	0.7	60	150-140	きつい	15-14	ベース走	20-30分		- 1
		筋の代謝†	0.6	50	130-120	ややきつ	13-12	ファルトレク	30分以上		- 1
	リカバリー	毛细血管密度 🕈	0.5	30	110-100	386	11-10	LSD	30分以上		1
	積極的休養		0.4	0	90-80	かなり楽	9-8				
			0.3	-	70-60	非常に楽	7-6	起床時			

【超高強度の間欠的トレーニング】

→段階的にトレーニングをやった後に行うことで、短期間で成果を得られるトレーニング

* タバタメソッドとは

立命館大学の田畑泉教授のグループが提唱している超高強度のインターバルトレーニングのプロトコールで、20秒ワークと10秒レストを8回繰り返す

20秒のワークはVO2maxの170%で実施すべき、超高強度トレーニング

短期間で有酸素能力(VO2max)、無酸素性作業能力の両方の改善が認められるトレーニング

タバタメソッドはエアロバイクやボクシングなどで行うと効果的

, J

Vo2Grid 15秒ワーク、15秒レストで行う、超高 強度インターバルトレーニング (オーストラリア人が作成)

ランニングでの実施がオススメ

~Vo2Grid~

Level D (80m×37m / Total 234m) → 黄枠 Level C (76m×35m / Total 222m) → 赤枠 Level B (71m×32m / Total 206m) → 白枠

【方法】

直線の矢印はスプリント、点線の矢印はジョグを行う 直線、点線それぞれ16秒以内にゴールし、次のスタートに 間に合わなければいけない。

つまり、1周=1分(15秒×4回/スプリント2回、ジョグ2回)

乳酸系

有酸素系

このページをコピーして、掲示などをして、選手教育にご活用ください

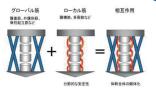
選手教育資料:ウォーミングアップ

~よい準備がよい結果を生む~

競技特性に即したスキルドリルやランニングドリルの実施、サイキングアップ

このページをコピーして、掲示などをして、選手教育にご活用ください

選手教育資料:コアトレーニング 1


~コアスタビリティートレーニング~

<コアトレーニングの基礎知識>

・構造的な不安定な腰椎はグローバル筋と ローカル筋の相互の働きにより、安定化される

- ・腰痛をすると腹横筋(ローカル筋)の機能が低下 →ドローインなどで再学習が必要
- ・ドローインができるようになったら、腹筋すべてを使って 腰椎を安定化させるブレイシングを身につける

(Bergmark 198 体幹筋群による安定性(筆者改変)

呼吸 体幹筋減 ・鼻で吸気、口で呼気する肺の全体を使った正しい腹式呼吸を身につける →胸郭や胸椎の可動性の正常化、姿勢の正常化

胸椎や胸郭と股関節の可動性の向上

・胸椎と股関節の可動性の低下は腰椎骨盤帯の代償を生み、傷害や不適切な動作の原因 →胸椎と股関節の可動性の向上はコアトレーニングを行う前提条件

<コアスタビリティートレーニング> ドローイン・ブレイシング エクササイズ コアアクティベーション with レッグムーブ デッドバグ コアスタビリティートレーニングの難易度 応用 基礎的なスタビリティ サイドブリッジ フロントブリッジ パックブリッジ プレイシングエクササイズ (適切な腰椎安定化の学習) (エルボートウ) ドローインエクササイズ (腹横筋の選択的収縮の学習) 手や足を挙げて、支持基底面を減らすと ローカル筋の筋活動が増加(負荷増加) 支持基底面を不安定化(パランスポール やBOSU)を使用するとローカル筋の筋活 動は増加せず、グローバル筋の筋活動が 维加

このページをコピーして、掲示などをして、選手教育にご活用ください

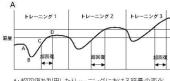
選手教育資料: コアトレーニング 2

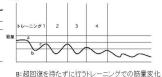
~系統的なコアトレーニング、効果的な過負荷の方法~

このページをコピーして、掲示などをして、選手教育にご活用ください

選手教育資料:ウェイトトレーニング 1

~基礎知識~


<u><ウェイトトレーニングの原則></u>


- (1)過負荷の法則(オーバーロードの法則)
- (2)漸進性(ぜんしんせい)の法則
- (3) 反復性の法則
- (4)特異性の法則(SAIDの法則)
- (5)意識性の法則
- (6)個別性の原則
- (7)全面性の原則

<超回復>

A: 超回復を利用したトレーニングにおける筋量の変化

適切な休息(超回復)が筋肥大を生む

→トレーニング、休息、栄養(サプリメントも含む)のバランスが筋量の増加には重要

〈プログラム構成案>

【例1】

月曜日 上半身Push&Pull(垂直方向)

火曜日 下半身

水曜日 上半身Push&Pull(水平方向)

木曜日 休息

金曜日 下半身

土曜日 上半身Push&Pull

日曜日 休息

【例2】

月曜日 上半身Push(垂直&水平方向)

火曜日 上半身Pull(垂直&水平方向)

水曜日 下半身

木曜日 上半身Push&Pull

金曜日 下半身

土曜日 休息

日曜日 休息

<トレーニング強度と効果>

トレーニング目標	トレーニング負荷	目標回数	セット	休息時間
パワー: 1回のパワー	90~100%	1~2回	3~5セット	2~3分
: 数回のパワー		3~4回	3~5セット	2~3分
筋力	80~90%	4~8回	2~6セット	2~3分
筋肥大	70~80%	8~12回	3~6セット	30秒~90秒
筋持久力	~70%	12~20回	2~3セット	20~30秒

選手教育資料: ウェイトトレーニング 2

~教科書にはほとんど載っていない知識や方法~

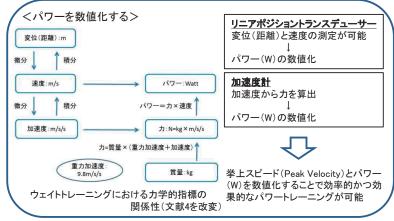
<機能的筋肥大トレーニング>

- ・最大パワーと筋力の産生の改善
- ・タイプII-B筋線維の増加を狙ったトレーニング
- *Time-under-tensionは20秒程度
- ・低Reps(1セット1~7Reps)、高強度(1RMの80~100%)

<リフティングチェーントレーニング(終動負荷)>

- ・フリーウェイトで起こる、可動域全体にわたって 負荷の不均一を解消させる方法(終動負荷トレーニング)
- ・新たなトレーニング負荷(体幹筋への負荷)としてもGood
- ・より効果を得るチェーンの重さは下記の通り

ベンチプレスでの負荷


90kg以下 = 10kg - 14kg chain 90kg - 180kg = 18kg - 22kg chain 180kg - 227.5kg = 35kg - 40kg chain 227.5kg以上 = 35kg - 40kg chain

スクワットでの負荷

90kg以下= 10kg - 14kg chain 90kg - 180kg = 22kg - 27.5kg chain 180kg - 227.5kg - 27.5kg - 32kg chain 227.5kg - 272.5kg = 36kg - 40kg chain 227.5kg - 317.5kg Squat = 40kg - 45kg chain 362.5kg以上 = 55kg - 65kg chain

負荷はhttp://getstrength.com/を参照

このページをコピーして、掲示などをして、選手教育にご活用ください

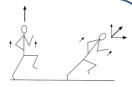
選手教育資料:スピードトレーニング

<加速>

正しいランニング姿勢

パワーライン(足関節から頭にかけて一直線) →地面からの力の伝達の効率化

地面に対する身体の傾き:40~45°


・この姿勢をとるためにはコアストレングスが必要

腕の振り

正しい腕振りによって垂直方向の推進力を発揮 →身体を前傾することで水平方向の推進力へ (加速のために重要)

肘の角度→前方の肘:90°、後方の肘: 110°

レッグアクション ポジティブシンアングル(Positive Shin Angle) 加速局面:接地位置は重心より後方

(Young et al 2001)

推奨種目

パワークリーン スクワット(最大筋力の向上) スレイドスプリント

上り坂ダッシュ

など

<最大スピード>

正しいランニング姿勢

地面に対する身体の傾き:85°程度

腕の振り

最大スピード局面ではバランスをとるため

最大スピード

レッグアクション 最大スピード局面:接地の位置は重心の真下 (Young et al 2001)

(Gambetta 2007)

ネガティブシンアングル (Negative Shin Angle) 接地の位置が重心より前方になると減速に作用 推奨種目 スピードバウンディング アシストスプリント など

光電管使用のススメ

5mもしくは10m間隔に光電管を設置し スピードカーブを算出することで、スプリ ントの詳細を明確化できます

> Swift SpeedLightは測定と同時にスピー ドカーブを作成し、iPadで即時にフィード バックしてくれる素晴らしい装置です

このページをコピーして、掲示などをして、選手教育にご活用ください

選手教育資料:プライオメトリクス(ジャンプと着地)

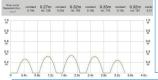
~爆発的パワー発揮を改善しよう~

<u><アライメント></u>

膝外反位(Knee Valgus)は着地、跳躍 両方において絶対に禁忌

原因

- 静的でのアライメント不良→下肢全体の基礎筋力の不足
- ・動的でのアライメント不良 →股関節外転筋群などの活動低下が多い


膝外反位の着地(左:両脚、右:片脚)

<u><プライオメトリックスの強度></u>

	スターティックジャンプ型	カウンタームーブメントジャンプ型	リバウンドジャンプ型
低強度	アンクルホッピング(反動なし)	スクワットジャンプ(反動強調)	立ち5段跳び
	垂直跳び(反動なし)	ボックスジャンプ(反動強調)	ディップスジャンプ
	立ち幅跳び(反動なし)		
	ボックスジャンプ(反動なし)		バウンディング
			ラテラルバウンディング
	片脚アンクルホッピング(反動なし)	片脚スクワットジャンプ(反動強調)	片脚ディップスジャンプ
$\mathbf{\Psi}$	片脚垂直跳び(反動なし)	片脚ボックスジャンプ(反動強調)	片脚連続ジャンプ
•	片脚立ち幅跳び(反動なし)		
高強度	など	など	な。

<SSCの評価項目>

RJIndex=跳躍高(m)/接地時間(Sec) RSI =滞空時間(Sec)/接地時間(Sec)

接地時間(Sec): 短時間での運動遂行能力 ☆できる限り短く

改善項目:予測、筋の予備緊張、正しい着地動作

滞空時間(跳躍高): 大きなエネルギーを発揮する能力 ☆できる限り長く(高く)

改善項目:最大筋力の向上、瞬発力

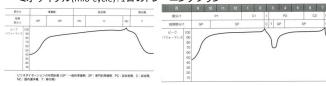
Swift SpeedMatは測定と同時にRSI算出してくれて、ipadで即時にフィードバックしてくれる素晴らしい装置です

このページをコピーして、掲示などをして、選手教育にご活用ください

選手教育資料:ピリオダイゼーション

~よい準備がよい成果を生む~

【ピリオダイゼーションの基本】

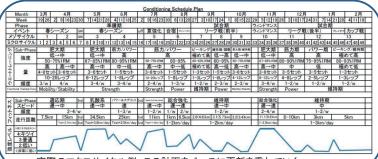

下記のようなサイクルに分けて考える

マクロサイクル(macro-cycle): 年間もしくは全体的なトレーニングプランメゾサイクル(meso-cycle): 具体的な目的を含む期間のトレーニングプラン

(数週間~数カ月)

ミクロサイクル(micro-cycle):1週間のトレーニングプラン

ミオサイクル(mio-cycle):1日のトレーニングプラン

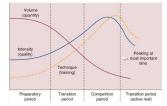

マクロサイクルの例:試合スケジュールなどを加味して計画を立てる

左:モノサイクル 右:バイサイクル

年に1回ピークをつくる場合、 年に2回ピークをつくる場合(文献1より引用)

年間計	準備期(週)	試合期(週)	移行期(週)	
モノサイクル (ピークが年に1回)	52週間	32週以上	10~15週	5週
バイサイクル (ピークが年に2回)	26週×2	13週以上	5~10週	3~4週
トライサイクル (ピークが年に3回)	17~18週×3	8週以上	3~5週	2~3週

ピリオダイゼーションの作成のガイドライン(文献1より一部改変)


実際のマクロサイクル例:この計画をベースに更新を重ねていく

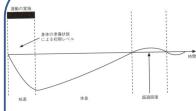
このページをコピーして、掲示などをして、選手教育にご活用ください

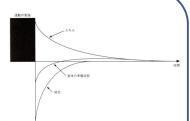
選手教育資料:ピリオダイゼーション 2

~戦略的コンディショニングを実現するために~

【線形ピリオダイゼーションと非線形ピリオダイゼーション】

- ・試合期が長期化している
- 現代スポーツには不向き・短期間のトーナメント前の
 - コンディショニングには合うこともある
- Volume


 Technique


 Time

 Activities

 Activities
- 試合期が長期化している
- 現代スポーツ向き(とくに球技)・フィットネス・疲労理論ともリンクしやすい

【超回復理論とフィットネス-疲労理論】

現象だけ見ると一見同じであるが、超回復理論では重要な大会の1~2週間前に強度の高いトレーニングを実施し、疲労状態を作り、その後は練習強度を抑え疲労の回復を努めて試合に臨む。一方、フィットネス・疲労理論は計画的に高密度高強度のトレーニングを実施し、ピーキング中にフィットネス(スキル)の低下を防ぎつつ、疲労 も減らす

【戦略なピリオダイゼーションを踏まえた1週間の過ごし方の例】

	M	Tu	W	Th	F	Sa	Su
Physical	ウエイト (Pump/筋持久力) リカバリー (睡眠/柔軟性) コンディションチェッ	ウエイト (筋肥大/最大筋力)	ウエイト (パワー)	Rest (Preview MTG)	移動		
Chill	(Recovery/Review) 走行距離:3.5km	攻撃の練習 (ランニング強度が高い) 走行距離:5.5-6.0km 時間:90分	守備、セットプレイの練習 (コンタクト強度が高い) 走行距離 :4-5km 時間:75分	マッサージなど 個々でコンディショニン グ	試合前日チェック 走行距離:3km 時間:45分	GAME	OFF

このページをコピーして、掲示などをして、選手教育にご活用ください

選手教育資料:安全にスポーツを行う

~EAPの作成例~

①役割および連絡手段

リーダー:アスレティックトレーナー 佐藤

080-●● ●●-△ △ △ △

応急処置:アシスタントトレーナー 鈴木

080-●●●-△△△△

救急車要請および誘導:S&Cコーチ 高橋

080-●●●-△△△△

他の選手の対応:コーチ 田中 080-●● ●●-△ △ △ △

③施設管理関係連絡先

(救急車を呼ぶ際は到着前に必ず連絡) トレーニングジャーナル運動場守衛所

担当:EAP警備保障株式会社

03 - ● ● ● - △ △ △ △

②ドクター病院関係連絡先 救急車 119番

チームドクター 渡辺

080-●●●-△△△△

ブックハウスHD大学病院

チームドクター勤務病院(搬送先第一候補)
(車で15分)

 $03- \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \triangle \triangle \triangle \triangle \triangle$

伊藤整形外科クリニック

最寄りの整形外科(車で5分、徒歩10分)

03-●● ●●-△ △ △ △

山本脳神経外科病院

最寄りの脳神経外科(車で10分)

 $03\text{-} \bullet \bullet \bullet \bullet \text{-} \triangle \triangle \triangle \triangle$

住所:東京都○△☆区スポーツ町1-1-1 電話番号:03-△△△△-○○○

消防署から1本道、ブックハウス運動場前の交差点より敷地に入る

落雷の際は全員、クラブハウス内に直ちに避難し、電気の配線や配管からは距離をとる

著者紹介

大塚 潔 (おおつか さとる)

1983年、東京都生まれ。早稲田大学人間科学部スポーツ科学科でアスレティックトレーニングを学ぶ。その4年間、学生トレーナーとしてラグビー蹴球部に所属し、4年間で3回の学生日本一を経験する。

大学卒業後、渡豪しスーパー14(当時)Queensland Redsで2年間働く。帰国後、筑波大学大学院人間総合科学研究科 体育学専攻 博士前期課程に入学し、再度学ぶ。2011年よりヤマハ発動機株式会社ラグビー部コンディショニングコーチに就任し、現在に至る。

コンディショニング Tips [後編]

2016年11月10日 第1版第1刷発行

著 者 大塚 潔

発行者 松葉谷 勉

発行所 有限会社ブックハウス・エイチディ

 $\mp 164-8604$

東京都中野区弥生町1丁目30番17号

電話03-3372-6251

印刷所 シナノ印刷株式会社

方法の如何を問わず、無断での全部もしくは一部の複写、複製、転載、デジタル化、映像化を禁ず。 ©2016 by Satoru Otsuka. Printed in Japan 落丁、乱丁本はお取り替え致します。